
~ )  Pergamon J. Appt Maths Mech~ Vol. 60, No. 5, pp. 753--758, 1996 
Copyright © 1997 Elsevier Science Ltd 

Printed in Great Britain. All fights reserved 
PII: S0021-8928(96)00095-0 oo21.-892,8/96 $24.00+0.00 

THE EFFECT OF A PHASE TRANSITION ON THE 
BOUNDARY CONDITIONS FOR RAREFIED GASESt 

S. P. B A K A N O V  and  V. I. R O L D U G H I N  

Moscow 

(Received 28 September 1995) 

The entropy production at the interface between a liquid and a binary vapour--gas mixture is calculated using a phenomenological 
approach. The consic.eration is confined to the case of the mixture flow over a slightly curved surface, the radius of curvature of 
which is much greater than the mean free path of the gas molecules. The presence, close to the interface, of kinetic boundary 
layers in which mass, momentum and energy transfer occurs is borne in mind. Using the entropy production obtained a system 
of phenomological equations is constructed for the scalar, vector and tensor surface fluxes and forces. New effects which arise 
from the non-equilibrium thermodynamics relations obtained are discussed. © 1997 Elsevier Science Ltd. All rights reserved. 

In the majority of cases, when considering flows of rarefied gases, the correction terms in the boundary 
conditions [1] play an important role, for example, in the Navier-Stokes approximation [2]. For flows 
of rarefied gases, a characteristic feature is the presence, in the region of the interface between the 
phases, of a boundary (Knudsen) layer, inside which the equations of fluid dynamics dynamics cannot 
be used, and it is then necessary to employ the Boltzmann kinetic equation to describe the non- 
equilibrium state. 

When the surface has an arbitrary shape, a kinetic description of the gas flows encounters considerable 
computational difficulties, since the problem is then no longer one-dimensional. Calculations for a slightly 
curved interface at which a phase transition may occur, were carried out in [3, 4], but only for a model 
kinetic equation and when there is complete accommodation of the molecules of a single-component 
gas. However, even when solving flow problems using the Boltzmann equation one cannot always give 
a clear quantitative description of some phenomena because of the lack of information in the majority 
of cases regarding the nature of the interaction between the gas and the surfaces over which the flow 
OCCurs. 

Other methods of constructing the boundary conditions for a rarefied gas, which differ from the kinetic 
method, enable the main features of the non-equilibrium processes at interfaces to be investigated. The 
method of non-equilibrium thermodynamics [5-12] is convenient from this point of view; it enables 
one to obtain the required boundary conditions in the form of a system of phenomenological equations. 
The kinetic coefficients that occur in the boundary conditions constructed in this way can, of course, 
only be calculated by solving the kinetic equation (or obtained from experiment). However, as an analysis 
shows, the majority of these can be calculated by solving the one-dimensional problem. 

In this paper we use the methods of non-equilibrium thermodynamics to obtain the boundary condi- 
tions for a binary mixture of gases at the surface of a condensed phase, where one of the components 
may undergo a phase transition. 

1. THE BALANCE EQUATIONS 

Suppose Oe(r) is a certain, generally speaking, tensor, macroscopic characteristic of the state of the 
gas. We will represent it in the form of the sum of two functions: ~'e(r), which satisfy the hydrodynamic 
equations in the Navier-Stokes approximation over the whole range of values of the coordinate r up 
to the boundary (we will obtain the boundary conditions just for it), and ~(r")(r), which vanishes outside 
the Knudsen layer 

q~,(r) = qn,Cr) + qs(~)(r) (1.1) 

The following condition is satisfied at the interface 
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t~en IZ=Oin[ E 

(the subscript e relates to the gas, the subscript i relates to the condensed phase, and n denotes the 
component of the vector or tensor characteristic normal to the surface). We will assume that the 
condensed phase is described by the hydrodynamic equations, i.e. ~i(r) = ~i(r) .  Then 

(W,,,, - % , , ) l z  = -W~K"~ lz  (1.2) 

We take the divergence of both sides of Eq. (1.1). In the steady case, by the conservation law for 
and ~ we have div ~ ( ~ )  = 0. Writing this equation in a system of x, x coordinates, where x is the axis 
normal to the surface and x is a two-dimensional vector of coordinates tangential to the surface, 
integrating with respect to x from 0 to ~,, and taking into account the properties of the function ~(r~), 
and also (1.2), we obtain the boundary condition for the normal component of the arbitrary function 
qne(r) 

~.'~ *~K"'dx (1.3) 
( % .  - * , . ) l z  = - ~ o 

Let us consider some examples. Suppose a binary gaseous mixture, non-uniform in temperature and 
composition, flows over a surface of arbitrary shape. We will derive the mass, momentum and energy 
balance equations at the interface, when at least one of the components of the mixture, flowing over 
the condensed phase, may undergo a phase transition on this surface. 

Suppose • = pv is the mass flux density of the medium of density p moving with velocity v. 
From Eq. (1.3) we then obtain the following boundary condition for the mass-average velocity of the 
gas v~ 

v,. P, z P, ~ o 

where j(m) is the mass flux localized in the Knudsen layer and pivi~ is the mass flux density of the 
condensed phase through the interface (the rate of evaporation or condensation). 

Assuming, to fix our ideas, that the dense phase is formed by molecules of the first component, while 
its surface is impenetrable for molecules of the second component, we can similarly obtain the boundary 
conditions for the velocities of the mixture components 

p, p, 
(1.5) 

where v (j) and pj are the mean velocity and density of thej th component and J(J) is its mass flux localized 
in the Knudsen layer. 

Suppose now that • = Pkt = P$kl -- akt is the momentum flux density, where Ckt is the viscous stress 
tensor and p is the pressure. We have 

(~t - t'~[>), - = ;911.~t / (1.6) 

where I-I~ is the momentum flux in the Knudsen layer. 
Suppose, finally, that • = I (e) is the energy flux density. Then 

( t~' - t~ "~)z = -oS{'> / (1.7) 

where j(e) is the Knudsen energy flux. 
We will convert Eq. (1.7) to a more convcnient form. To do this we use the explicit expression for 

the energy fluxes in the gas and the condensed phase. By definition [13], the energy flux in the bulk of 
the liquid or gas phase is 

I~ e) = qk + phu k - o~ t (1.8) 
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Here h is the enthalpy of unit mass and q is the heat flux density. 
We substitute (1.8) into (1.7), taking into account the relation hs - hi = L ,  where hs is the enthalpy 

of unit mass of saturated vapour and L is the specific heat of the phase transition. We then obtain 

[ qn - qin + p cu ¢nhe - O ,a u , t  + u i.,au il - -  P ihs U in "F P i IJ in L]t = -~gJ (~) / 3,r (1.9) 

2. ENTROPY PRODUCTIO N  AT THE INTERFACE 

Equations (1.4)-(1.7) are the first four boundary conditions for the macrocharacteristics of the gaseous 
mixture, which satisfy the fluid dynamics equations far from the interface between the gas and the liquid. 
To obtain the lacking boundary conditions and to close those already obtained, i.e. to establish relations 
between the fluxes j(m), jr/), II~t and j(e) in the Knudsen layer and the macrocharacteristics of the gas, 
we will now use the methods of non-equilibrium thermodynamics. To do this we calculate the entropy 
production AS at the interface. By the entropy balance equation we have for the entropy production 
between the phas.zs 

ASr = I (I~ s) -l~S))n d'£ (2.1) 

where I (s) and I/(s3 are the entropy fluxes in the gas and the condensed phase, respectively. For the latter 
we take the usual classical expression 

I~ s) = qi  / Ti + viSi (2.2) 

where $i is the entropy per unit volume of the liquid phase and T i is its temperature. We also use the 
well-known thermodynamic equations [13] and write 

S i = h~ - Iti = hs - It., _ L = S s L (2.3) 
p, r, p, r, 

where h i and ~ are the enthalpy and the chemical potential per unit mass of the liquid. Under 
thermodynamic equilibrium conditions !1/= !~ (its is the chemical potential and Ss and Ps are the entropy 
and density of the saturated vapour). 

It can be shown that the entropy flux in the gas in the approximation considered must be calculated 
taking certain Barnett terms into account [6--12]. A calculation for a binary mixture of gases [10] gives 
the following expression 

I ~ s ) = q ~ ' - k ( v ° ) - v ( 2 ) ) n n l - " ~ ' n 2 ( m 2 l n C I - m l l n C z ) - o e , ~ _ _ l  Te p, "~/J (In Cj - '~')  + 

+ f ( v  - 
re pr, 

ne = E nj, P = E Pj ,  Cj = n;e  / ( 2 n p j p j ) ~  
J j 

(2.4) 

Here nj is the number of particles of thejth kind per unit volume of the gas, pj are the partial pressures 
of the components;, f and g are certain functions of the parameters of the mixture (see [13, 14]), mj is 
the mass of moleeales of the jth kind, and 

5 m2-ml "nln2 (v~l) --V(2)) (2.5) 
l = q e  - -2P  Pe n, 

Substituting (2.4) into (2.1), using the balance cquation (1.3), and also the equations 

h, =_5p., 
2 p~ ' "2 p.~ 

where Ps is the saturated vapour pressure, we obtain 
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(2.6) 

where we have introduced the following notation for the thermodynamic forces 

x~O~ 1 = , x(O) vxi ='~(qi + l-piviL)n, X~ °) piu i'~PlTe 3 = diVOT/ 

L a__(Z+Z g ) xl'=o'.=, x~')=2~t,r~ r+pr, °.~ 

= -  -----P d - a,~ 

1 ~ 1 '~ ' 
= - - - - -  X l  2) X(5 I) II in ,  7;, ~- = - ~ < " <  

(2.7) 

and for the fluxes 

i~o) I I g = ------ + O~ 

T, T i p T ,  

lt2°)=p,-p, +O,,,f f + P' ]+ P--L(p-pi-o,u,) 
t P, ) Pi 

1(o~ I 3 = - T S P  I l~  

=IvTe [L ¢ -v i  +-~I+/(v(I) - v(2))] c if,> 

jt~) 
I(2 ') - J ,  I (') = 3 It4'~:J ~), l ( ' = n ~  

p 

112) = II~,, - Sp I I ~  S~,  

(2.8) 

Here 

n p, ) 

't 
PJ P2 

(2.9) 

three systems of phenomenological equations 

lkt°l= Y. AtaX[ °), i, k=  I, 2, 3 (2.10) 
i 

I~ ) = ~  L~X,r p , q = l - 5  (2.11) 
q 

I~ 2) = kXl 2) (2.12) 

The coefficients Aki and Lpq have a symmetry property: Aki = A/k, Leq = Lqp. Equations (2.10) for 
k = 1,2 and Eqs (2.11) for p = 1 are boundary conditions which describe the temperature and 
pressure jumps of the saturated vapour at the surface of the phase transition an the slip of the 
mixture, which supplement (1.4)-(1.8). The remaining equations of (2.10) close system (1.4)-(1.8), i.e. 

The bracket ' • denotes a traceless tensor. 
Hence, bearing in mind the tensor dimensions of the fluxes and forces, we can write the following 
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express the Knudsen fluxes occurring in it in terms of the derivatives of the gas and liquid macro- 
characteristics. 

Note that the consideration of the phase transition and the mobility of the liquid phase has led not 
only to a quantit~ttive but also to a qualitative change in the boundary conditions: tensor characteristics 
have appeared in them which were not present in the case of solid surfaces [6-12, 15-17]. 

3. D I S C U S S I O N  OF T H E  R E S U L T S  

When a phase transition is taken into account, a number of new effects occur in the boundary 
conditions. Thus:. in addition to the jump in temperature there is also a jump in the vapour pressure 
(this effect was partially considered previously and discussed in detail using methods of non-equilibrium 
thermodynamics in [18]). Unlike the approximations considered previously, Eqs (1.10)-(1.12) show that 
the pressure and temperature jumps are governed not only by the mass and heat fluxes but also by the 
normal ~ m p o n e n t  of the momentum flux and by the rate of deformation of the surface of the condensed 
phase (X5 t J in Eq. (2.7)). The motion of the condensed phase also gives rise to stresses in the Knudsen 
layer and a previously unknown form of gas slip on the surface of the phase transition. The physical 
nature of  the new boundary effects are fairly obvious: when complex motion of the surface occurs, the 
molecules leaving; it have a non-Maxwellian velocity distribution. This distribution relaxes to a volume 
distribution in the Knudsen layer and gives rise to additional stresses in the kinetic boundary layer, 
generating slip and jump effects, when there are no other inhomogeneities in the gas. As far as we know, 
these effects haw'. not so far been discussed in the literature, though it is true that it was pointed out 
in [15] that inhomogeneity in the rate of evaporation generates momentum jumps at the interface. 

Boundary conditions (2.10)-(2.12) can be used when considering the motion of a drop in a non- 
uniform vapour-gas mixture, or gas bubbles in inhomogeneous liquids, particularly when surfactants 
are present at the interface boundaries. This is due to the fact that the layer of surfactant molecules 
inhibits mass transfer. Hence, even when the mean free path is small compared with the radius of 
curvature of  the interface, evaporation occurs under kinetic conditions (see, for example, [19]). This 
change in the evaporation mechanism is accompanied by an increase in the part played by the effects 
considered above. Surfactant layers can also cause non-uniform motion of the liquid and are transported 
along the liquid surface with substantial velocities even when the carrier liquid has high viscosity. Both 
these phenomena can also considerably increase the manifestation of the above-mentioned effects at 
the interface. Specific estimates, however, can be obtained after determining the values of the kinetic 
coefficients. A calculation of these is outside the scope of the present paper. 

4. A P P E N D I X  

We will consider the problem of the contributions to entropy production (2.6). It is necessary to do this because 
the quantity AS z is sometimes identified [15] with the entropy production due to collisions of molecules with the 
boundary surfaces, and it is also erroneously asserted in [16] that it does not contain terms describing the entropy 
production in the Knudsen layer. This problem has been discussed in some detail [11, 17] at the kinetic level for 
the case of a simple, gas and plane solid surfaces over which the flow occurs. In the ease of a gaseous mixture and 
when there is a phase transition on the surface it is more convenient to use a phenomenological approach. 

We will write the entropy balance equation under steady conditions in the form 

div II s) = '~t (4.1) 

where It (s) and AS t are the exact values of the entropy flux and entropy production. We will split these quantities 
into two components, namely, hydrodynamic and Knudsen, for each of which its own balance equation holds 

div I~ s) = AS e , div I(KSn ) = ASKn (4.2) 

We integrate the second equation of (4.2) along the normal to the surface. Taking into account the fact that I(~ ) 
tends to zero far from the surface, we have 

K n '  nil: 
0 

The difference ~:tween the normal components of the entropy flux inside a solid and the exact entropy flux 
in a gas is determined by the entropy production ASw due to collisions of molecules with the boundary surface: 
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I~ (s) - / f ~  = AS,, The quantity/(s) is the sum of the hydrodynamic entropy flux/(o,s ) and the Knudsen entropy flux I ~  ). 
Using (4.3) we can obtain the following expression for the difference between the hydrodynamic entropy fluxes 

in a gas and inside a solid 

s'- ÷T , ,n: 
o 

The difference in the hydrodynamic entropy fluxes outside and inside the solid, integrated over the surface, by 
definition is the entropy production at the interface, i.e. 

~ t S = ,  (I(S '-I(S)~dE=J[ASw ] "-ca -in - - -  + ~ ASKn dx d~ (4.4) 
0 J 

(we have omitted the term which vanishes on integration). 
Hence, the entropy production is governed by two terms - the entropy production ~Sw due to collisions of 

molecules with the surface over which the flow occurs, and the entropy production in the Knudsen layer in the 
gas close to the interface. 

A comparison of Eqs (4.4) and (2.6) shows that the terms with It  °), Xt °), I~ °), X~ °) and 11 (1), Xl 0) in (2.6) correspond 
to entropy production due to collisions of molecules with the surface, while the remaining terms represent the 
entropy production related to the inter-molecular collisions in the Knudsen layer. 
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